3.2.41 \(\int \csc ^2(e+f x) (a+b \sin ^2(e+f x))^{3/2} \, dx\) [141]

3.2.41.1 Optimal result
3.2.41.2 Mathematica [A] (verified)
3.2.41.3 Rubi [A] (verified)
3.2.41.4 Maple [A] (verified)
3.2.41.5 Fricas [F]
3.2.41.6 Sympy [F(-1)]
3.2.41.7 Maxima [F]
3.2.41.8 Giac [F]
3.2.41.9 Mupad [F(-1)]

3.2.41.1 Optimal result

Integrand size = 25, antiderivative size = 181 \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {a \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {(a-b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {a (a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}} \]

output
-a*cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f-(a-b)*EllipticE(sin(f*x+e),(-b/a) 
^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/f/(1+b*si 
n(f*x+e)^2/a)^(1/2)+a*(a+b)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)* 
(cos(f*x+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)
 
3.2.41.2 Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.78 \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {a \left (\sqrt {2} (2 a+b-b \cos (2 (e+f x))) \cot (e+f x)+2 (a-b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-2 (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )\right )}{2 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[Csc[e + f*x]^2*(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
-1/2*(a*(Sqrt[2]*(2*a + b - b*Cos[2*(e + f*x)])*Cot[e + f*x] + 2*(a - b)*S 
qrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] - 2*(a + 
b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)]))/(f* 
Sqrt[2*a + b - b*Cos[2*(e + f*x)]])
 
3.2.41.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3667, 376, 27, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin (e+f x)^2\right )^{3/2}}{\sin (e+f x)^2}dx\)

\(\Big \downarrow \) 3667

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\csc ^2(e+f x) \left (b \sin ^2(e+f x)+a\right )^{3/2}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 376

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\int \frac {b \left (2 a-(a-b) \sin ^2(e+f x)\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)-a \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \int \frac {2 a-(a-b) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)-a \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {a (a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )-a \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )-a \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )-a \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}\right )-a \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (b \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}\right )-a \sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

input
Int[Csc[e + f*x]^2*(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*(-(a*Csc[e + f*x]*Sqrt[1 - Sin[e + f*x] 
^2]*Sqrt[a + b*Sin[e + f*x]^2]) + b*(-(((a - b)*EllipticE[ArcSin[Sin[e + f 
*x]], -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a 
])) + (a*(a + b)*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e 
 + f*x]^2)/a])/(b*Sqrt[a + b*Sin[e + f*x]^2]))))/f
 

3.2.41.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 376
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1 
)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^ 
2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a* 
d*(q - 1)) + d*((b*c - a*d)*(m + 1) + 2*b*c*(p + q))*x^2, x], x], x] /; Fre 
eQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && LtQ[m, -1] & 
& IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3667
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, 
p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.2.41.4 Maple [A] (verified)

Time = 2.28 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.96

method result size
default \(\frac {a \left (b \left (\cos ^{4}\left (f x +e \right )\right )+\left (-a -b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \left (F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b \right )\right )}{\sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(174\)

input
int(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
a*(b*cos(f*x+e)^4+(-a-b)*cos(f*x+e)^2+sin(f*x+e)*(-b/a*cos(f*x+e)^2+(a+b)/ 
a)^(1/2)*(cos(f*x+e)^2)^(1/2)*(EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a+Elli 
pticF(sin(f*x+e),(-1/a*b)^(1/2))*b-EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a+ 
EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b))/sin(f*x+e)/cos(f*x+e)/(a+b*sin(f* 
x+e)^2)^(1/2)/f
 
3.2.41.5 Fricas [F]

\[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2} \,d x } \]

input
integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
integral(-(b*cos(f*x + e)^2 - a - b)*sqrt(-b*cos(f*x + e)^2 + a + b)*csc(f 
*x + e)^2, x)
 
3.2.41.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

input
integrate(csc(f*x+e)**2*(a+b*sin(f*x+e)**2)**(3/2),x)
 
output
Timed out
 
3.2.41.7 Maxima [F]

\[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2} \,d x } \]

input
integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*sin(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^2, x)
 
3.2.41.8 Giac [F]

\[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \csc \left (f x + e\right )^{2} \,d x } \]

input
integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
integrate((b*sin(f*x + e)^2 + a)^(3/2)*csc(f*x + e)^2, x)
 
3.2.41.9 Mupad [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int \frac {{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}}{{\sin \left (e+f\,x\right )}^2} \,d x \]

input
int((a + b*sin(e + f*x)^2)^(3/2)/sin(e + f*x)^2,x)
 
output
int((a + b*sin(e + f*x)^2)^(3/2)/sin(e + f*x)^2, x)